MontePython: Implementing Quantum Monte Carlo using Python

نویسنده

  • Jon K. Nilsen
چکیده

We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems

We present TRIQS/CTHYB, a state-of-the art open-source implementation of the continuoustime hybridisation expansion quantum impurity solver of the TRIQS package. This code is mainly designed to be used with the TRIQS library in order to solve the self-consistent quantum impurity problem in a multi-orbital dynamical mean field theory approach to strongly-correlated electrons, in particular in th...

متن کامل

PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta

SUMMARY PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating ene...

متن کامل

Probabilistic programming in Python using PyMC3

Probabilistic programming allows for automatic Bayesian inference on user-defined probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC) sampling allow inference on increasingly complexmodels. This class ofMCMC, known as Hamiltonian Monte Carlo, requires gradient information which is often not readily available. PyMC3 is a new open source probabilistic programming framework wr...

متن کامل

gpustats: GPU Library for Statistical Computing in Python

In this talk we will discuss gpustats, a new Python library for assisting in “big data” statistical computing applications, particularly Monte Carlobased inference algorithms. The library provides a general code generation / metaprogramming framework for easily implementing discrete and continuous probability density functions and random variable samplers. These functions can be utilized to ach...

متن کامل

Computational study of Anticancer Dasatinib for drug delivery systems

Dasatinib is a tyrosine kinase inhibitor (TKI) that is used to treat chronic myeloid leukemia and in the management of ulcerative colitis (UC) and to provide appropriate results in treatment. Dasatinib is significantly higher and faster than full cytogenetic and large molecular responses as compared to imatinib. In the recent study, using the NMR data, the frequency and thermochemical propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007